DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 2013

Serial No.	MECHANICAL ENGINEERING	A
	Code No. 14	

Time Allowed: Two Hours

Maximum Marks: 300

INSTRUCTIONS

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. ENCODE CLEARLY THE TEST BOOKLET SERIES A, B, C OR D AS THE CASE MAY BE IN THE APPROPRIATE PLACE IN THE RESPONSE SHEET.
- 3. You have to enter your Roll Number on this Test Booklet in the Box provided alongside. DO NOT write anything else on the Test Booklet.

Your Roll No.	

- 4. This Booklet contains 120 items (questions). Each item comprises four responses (answers). You will select one response which you want to mark on the Response Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
- 5. In case you find any discrepancy in this test booklet in any question(s) or the Responses, a written representation explaining the details of such alleged discrepancy, be submitted within three days, indicating the Question No(s) and the Test Booklet Series, in which the discrepancy is alleged. Representation not received within time shall not be entertained at all.
- 6. You have to mark all your responses ONLY on the separate Response Sheet provided. See directions in the Response Sheet.
- 7. All items carry equal marks. Attempt ALL items. Your total marks will depend only on the number of correct responses marked by you in the Response Sheet.
- 8. Before you proceed to mark in the Response Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the Response Sheet as per instructions sent to you with your Admit Card and Instructions.
- 9. While writing Centre, Subject and Roll No. on the top of the Response Sheet in appropriate boxes use "ONLY BALL POINT PEN".
- 10. After you have completed filling in all your responses on the Response Sheet and the examination has concluded, you should hand over to the Invigilator only the Response Sheet. You are permitted to take away with you the Test Booklet.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

ROUGH WORK

EIJ-50100-A

		θ , their resu	
	(A) $2P\cos\theta$	` /	$2P\cos\theta/2$
	(C) $2P\sin\theta$	(D)	P cos 2θ
2.	In a statically determinate problem, the num		-
	(A) equals the numbers of unknowns	(B)	is less than number of unknowns
	(C) is more than number of unknowns	(D)	cannot be determined
3.	The number of independent scalar equations system is:	s of equilibriu	um of a rigid body under concurrent forc
	(A) 4	(B)	3
	(C) 5	(D)	6
4.	D'Alembert principle states that system of forwith the inertia force of the body:	orces acting o	on a body is following type of equilibriur
	(A) static	(B)	dynamic
	(C) both		none
6.	 (B) only in gravitational field (C) only if the total work done by the particular (D) only if the forces is tangential to the transfer (D) only if the forces is tangential to the transfer (E) the impact problem the following condition (A) the total kinetic energy remains unchanged (B) the total linear momentum remains unchanged (C) the magnitude of the total linear momentum remains unchanged (D). 	ijectory ons must alw nged hanged	vays be satisfied:
	(D) none of the above		
7.	The displacement of a particle undergoin $t^3 - 21t^2 + 60t$ meters. The acceleration of the (A) -18 m/s^2 (C) 9 m/s^2	he particle, w	_
8.	Two metallic blocks having masses in the raplane starting from rest position. When the blave their kinetic energies in the ratio: (A) 2:3	olocks reach t	the bottom of the inclined plane, they wi 3:5
	(C) 3:2	(D)	7:4

9.	If a shaft made of ductile material is subjected to combased on which one of the following theories would		
	(A) Maximum principle stress theory	(B)	Maximum shear stress theory
	(C) Maximum strain energy theory	(D)	Maximum distortion energy theory
10.	If the area, length and the stress to which a bar is su energy of the bar will be:	bjec	ted be all doubled, then the elastic strain
	(A) Doubled	(B)	Three times
	(C) Four times	(D)	Sixteen times
11.	If a cantilever beam of length l , the concentrated moment $P \times l$, the deflection will increase by :	l loac	l P at the end is replaced by a bending
	(A) 1 time	(B)	1.5 times
	(C) 1.25 times	(D)	2 times
12.	A single degree of freedom spring mass damper smass $m = 10 \text{ kg}$ and a damper of damping constant cwill be:	=24	0 N-sec/m, its damped natural frequency
	(A) 18 rad/sec	(B)	16 rad/sec
	(C) 20 rad/sec	(D)	22 rad/sec
13.	The ratio of maximum displacement of the forced v known as:	ibrat	ion to the deflection due to static force is
	(A) Damping Factor	(B)	Damping Coefficient
	(C) Logarithmic Decrement	(D)	Magnification Factor
14.	Stress concentration in static loading is:		
	(A) Very serious in ductile material		Very serious in brittle material
	(C) Less serious in brittle material	(D)	None of the above
15.	If n links are connected at the same joint, the joint is		
	(A) $(n-1)$ binary joints		(n-2) binary joints
	(C) $(n-3)$ binary joints	(D)	(2n-1) binary joints
16.	The mechanical advantage for a rigid link AB, wh (neglecting friction effect), is given by:	ose d	riving end is A whereas driven end is B
	(A) V_A/V_B	(B)	$V_{_{ m B}}/V_{_{ m A}}$
	$(C) V_B V_A$	(D)	None of the above
17.	If a mechanism has n links, then the number of insta		<u>-</u>
	(A) n		n(n-1)/2
	(C) $n/2$	(D)	(n-1)

18.	If a constant velocity ratio of driving and driven sha	afts 1s	required then the mechanism used is:
	(A) Ackermann gearing	(B)	Hooke's joint
	(C) Double Hooke's joint	(D)	Grass-Hopper mechanism
19.	The train value of a gear train is:		
	(A) equal to velocity ratio	(B)	reciprocal of velocity ratio
	(C) always greater than unity	(D)	none of the above
20.	In a clock mechanism, the gear train used to conne	ct mi	nute hand to hour hand is:
_0.	(A) Epicyclic gear train		Reverted gear train
	(C) Compound gear train	. ,	Simple gear train
		()	1 8
21.	2,		
	(A) sum of maximum and minimum energies		
	(B) difference between the maximum and minimum		ergies
	(C) ratio of the maximum energy and minimum en	•	
	(D) ratio of mean resisting torque to the work do	ne pei	rcycle
22	If the netating many of a sine term of hands and in distribu	. اماد. ماد	a ou oth ou sing to me flow he call who are made
22.	If the rotating mass of a rim type flywheel is distributed is half the mean radius of the former, then the		
	will be:	ie ene	ergy stored in the ratter at the same speed
	(A) Four times the first one	(B)	Same at the first one
	(C) One fourth of the first one	` ′	One and half times the first one
	(c) One fourth of the first one	(D)	One and han times the first one
23.	For a cycloidal tooth profile, pressure angle at (i) C	omm	encement of engagement, (ii) Pitch point
	and (iii) End of engagement will be:		
	(A) constant	(B)	zero, maximum, zero
	(C) maximum, zero, maximum	(D)	zero, zero, maximum
24.	Material having highest cutting speed is:		
	(A) Cast iron	` ′	Bronze
	(C) Aluminium	(D)	High carbon steel
25.	Angle between the shear plane and work surface i	s kno	wn as :
	(A) lipangle		rake angle
	(C) cutting angle		shear angle
	(1) 1111-81-81	(-)	
26.	Binding material used in cemented carbide tools is	:	
	(A) Nickel	(B)	Cobalt
	(C) Chromium	(D)	Silicon
EII	-50100-A	5	[Turn over
111	20200 12	II	[luin over

27.	The usual ratio of forward and return stroke in shap (A) 2:1 (C) 2:3	(B)	
28.	Tool life is most affected by: (A) cutting speed (C) feed and depth		tool geometry microstructure of material being cut
29.	Poor surface finish results due to: (A) heavy depth of cut (C) high cutting speed		low cutting speed coarse feed
30.	Abrasive used for grinding ceramics and tungsten c (A) Diamond (C) Silicon carbide	(B)	le is : Alumina Boron carbide
31.	A twist drill is a: (A) side cutting tool (C) end cutting tool	, ,	front cutting tool none of these
32.	Gantt chart is used for: (A) inventory control (C) production schedule		material handling machine repair schedules
33.	The main object of scientific layout is: (A) to produce better quality of product (C) to minimise production delays	` ′	to utilise maximum floor area all of these
34.	In value engineering, the term value refers to: (A) manufacturing cost of the product (C) total cost of the product		selling price of the product utility of the product
35.	In inventory control theory, the economic order qual (A) average level of inventory (B) optimum lot size (C) capacity of a warehouse (D) lost size corresponding to break-even analysis		is:
36.	Production cost refers to prime cost plus: (A) factory overheads (B) factory and administration overheads (C) factory, administration and sales overheads (D) factory, administration, sales overheads and prime cost plus: 	ofit:	

37.	A systematic job improvement sequence will consist		
	(A) motion study(C) job enrichment		all of these
	(c) Job chilchillich	(D)	and these
38.	Military type of organisation is known as:		
	(A) line organisation		functional organisation
	(C) line and staff organisation	(D)	line, staff and functional organisation
39.	The procedure of modifying work content to give involving employees in planning, organisation and		
	(A) job enlargement	(B)	job enrichment
	(C) job rotation	(D)	job evaluation
10	Fixed position layout is also known as:		
тО.	(A) analytical layout	(B)	synthetic layout
	(C) static product layout	, ,	none of these
	((-),	(-)	
41.	Slag inclusion in casting is a:		
	(A) surface defect		internal defect
	(C) superficial defect	(D)	none of the above
1 2.	The most suitable material for die casting is:		
	(A) Steel	(B)	Cast Iron
	(C) Nickel	(D)	Copper
13	Draft on pattern for casting is:		
тЭ.	(A) shrinkage allowance		
	(B) identification number marked on it		
	(C) taper to facilitate its removal from mould		
	(D) for machining allowance		
1 1	Summa in accepting unfamates.		
+4.	Sprue in casting refers to: (A) gate	(B)	runner
	(C) riser	` /	vertical passage
	(C) Ther	(D)	vortical pussage
1 5.	Ornaments are cast by:		
	(A) die casting		continuous casting
	(C) pressed	(D)	centrifugal casting
1 6.	The aim of value engineering is to:		
	(A) find the depreciation value of a machine		
	(B) determine the selling price of a product		
	(C) minimize the cost without change in quality of	the p	roduct
	(D) all of the above		

1 7.	In time study, the rating factor is applied to determi	ne:		
	(A) standard time of a job	(B)	merit rating of the worker	
	(C) fixation of incentive rate	(D)	normal time of a worker	
1 8.	CPM is the:			
	(A) time oriented technique	(B)	event oriented technique	
	(C) activity oriented technique	(D)	target oriented technique	
1 9.	Simplex method is the method used for:			
	(A) value analysis	(B)	network analysis	
	(C) linear programming	(D)	queuing theory	
50.	Which of the following wage incentive plans guara paid for the fixed percentage of time saved?	ntees	minimum wage to a worker and bonus is	
	(A) Halsey plan	(B)	Gantt plan	
	(C) Rowan plan	(D)	Emerson's efficiency plan	
51.	Job evaluation is the method of determining the:			
	(A) relative values of a job	(B)	worker's performance on a job	
	(C) worth of the machine	(D)	value of overall production	
52.	The routing function in a production system design (A) manpower utilisation	is coı	ncerned with:	
	(B) quality assurance of the product			
	(C) machine utilisation			
	(D) optimising material flow through the plant			
53.	Direct expenses include:			
	(A) factory expenses	(B)	selling expenses	
	(C) administrative expenses		none of these	
54.	String diagram is used:			
	(A) for checking the relative values of various layouts			
	(B) when a group of workers are working at a place			
	(C) where processes require the operator to be moved from one work place to another			
	(D) all of the above			
55.	Which of the following types of layout is suitable for	r auto	omobile manufacturing concern?	
	(A) product layout	(B)	process layout	
	(C) fixed position layout	(D)	combination layout	

56.	Que	uing theory is associated with:				
	(A)	inventory	(B)	sales		
	(C)	waiting time	(D)	production time		
57.	PER	RT requires:				
	(A)	single time estimate	(B)	double time estimate		
	(C)	triple time estimate	(D)	none of these		
58.	Whi	ich of the following statements is correct?				
	(A)	A-B-C analysis is based on Pareto's principle	•			
	(B)	Simulation can be used for inventory control				
	(C)	Economic order quantity formula ignores varia	ations	s in demand pattern		
	(D)	all of the above				
59.	In b	reak even analysis, total cost consists of:				
	(A)	fixed cost + sales revenue	(B)	variable cost + sales revenue		
	(C)	fixed cost + variable cost	(D)	fixed cost + variable cost + profit		
60.	Ino	In order to avoid excessive multiplication of facilities, the layout preferred is:				
	(A)	product layout	(B)	process layout		
	(C)	group layout	(D)	static layout		
61.	Whi	ich of the following can be regarded as gas so	that	gas law could be applicable within the		
	com	monly encountered temperature limits?				
	(A)	O_2 , N_2 , steam, CO_2	(B)	O ₂ , N ₂ , water vapour		
	(C)	SO ₂ , NH ₃ , CO ₂ , moisture	(D)	O_2 , N_2 , H_2 , air		
62.	A closed system is one in which:					
	(A)	(A) mass does not cross boundaries of the system, though energy may do so				
	(B)	(B) mass crosses the boundary but not the energy				
	(C)	(C) neither mass nor energy crosses the boundaries of the system				
	(D)	both energy and mass cross the boundaries of	the s	ystem		
63.	Abs	olute zero pressure will occur:				
	(A)	at sea level				
	(B)	at the centre of the earth				

 $(C) \ \ when molecular \, momentum \, of \, the \, system \, becomes \, zero$

(D) under vacuum conditions

EIJ	-50100-A	10 			
	(D) less or more than 6 ata depending on t	temperature at the end of compression			
	(C) more than 6 ata	and of a second of			
	(B) less than 6 ata				
	(A) 6 ata				
	ratio of 6, then pressure at the end of compr	ression shall be :			
72.	± • • • • • • • • • • • • • • • • • • •	ospheric condition in a cylinder having compression			
	(C) remain same	(D) attain negative value			
/1.	(A) decrease	n other then resultant entropy of the system will: (B) increase			
71	When two goese auddenly miv up with each	a other than regultant antropy of the system will			
	(C) 627 °C	(D) 927 °C			
	(A) 81 °C	(B) 900 °C			
	An ideal gas at 27°C is heated at constant temperature of gas then will be:	t pressure till its volume becomes three times. The			
	(c) Carnot cycle	(D) Reversed-Diayton cycle			
	(A) Brayton cycle(C) Carnot cycle	(B) Joule cycle(D) Reversed-Brayton cycle			
09.	The following cycle is used for air craft refri	-			
60	The following and binned 10 11 C C	increation .			
	(C) adiabatic flow	(D) isothermal flow			
	(A) constant volume flow	(B) constant pressure flow			
68.	Steam flow through a nozzle is considered a	as:			
	r	· / 1			
	(C) adiabatic expansion	(D) parabolic expansion			
	(A) free expansion	(B) hyperbolic expansion			
67.	If a fluid expands suddenly into vacuum throis called:	ough an orifice of large dimension, then such a process			
	(1)	()			
	(C) second law of thermodynamics	(D) third law of thermodynamics			
00.	The basis for measuring thermodynamic pro (A) zeroth law of thermodynamics	(B) first law of thermodynamics			
66	The basis for measuring the made manis and	oparty of temperature is given by			
	(C) van der Waal's equation	(D) Avogadro's equation			
	(A) Real gas equation	(B) Maxwell's equation			
65.	The equation $\left(p + \frac{a}{v^2}\right)(v - b) = R$ is known	wn as:			
	(D) is dependent on the paul followed and	and on the state			
	(C) is not dependent on the path followed(D) is dependent on the path followed and				
	(B) does not depend on the mass of the sy	<u> </u>			
	(A) depends on the mass of the system, like volume				
64.	Intensive property of a system is one whose value:				

73.	The air-fuel ratio of the petrol engine is controlled by	oy:	
	(A) fuel pump	(B)	governor
	(C) injector	(D)	carburettor
74.	Engine pistons are usually made of aluminum alloy	becai	use it:
	(A) is lighter	` ′	wears less
	(C) absorbs shocks	(D)	is stronger
7.5			. 1 . 1.1 . 64 . 1 . 6
75.	For maximum power generation, the air fuel ratio f		
	(A) 9:1	` ′	12:1
	(C) 15:1	(D)	18:1
76	In a naturally aspirated diesel engine, the air is supp	olied l	ov :
, 0.	(A) a supercharger		a centrifugal blower
	(C) a vacuum chamber		an injection tube
	(c) a vacuum chamber	(D)	un injection tabe
77.	Ignition quality of petrol is expressed by:		
	(A) octane number	(B)	cetane number
	(C) calorific value	` ′	self ignition temperature
	(c) the contract contract	(2)	sen ignasii vemperanore
78.	Ignition timing of a multi cylinder petrol engine can	be ac	ljusted by :
	(A) rotating the crank		adjusting the spark plug gap
	(C) adjusting ignition coil position		rotating the distributor
		` '	
79.	The elements of most concern in regard to pollution	n cau	sed by engines are :
	(A) CO and CO ₂	(B)	CO and hydrocarbons
	(C) CO ₂ and hydrocarbons	(D)	hot products of combustion
80.	Water boils when its vapour pressure:		
	(A) equals that of the surroundings		
	(B) equals 760 mm of mercury		
	(C) equals to atmospheric pressure		
	(D) equals the pressure of water in the container		
01	William of the Callegraphy and a late to the state of the	1	L 9
81.	Which of the following gases has the highest calorif		
	(A) producer gas		coal gas
	(C) coke oven gas	(D)	blast furnace gas
82.	The diameter of Cornish boiler is of the order of:		
02.	(A) 1-2 m	(B)	1.5-2.5 m
	(C) 2-3 m		2.5-3.5 m
	(C) 2 3 III	(D)	2.0 3.0 111

83.	Which of the following is fire tube boiler?				
	(A) locomotive boiler	(B) Babcock and Wilcox boiler			
	(C) Stirling boiler	(D) all of the above			
84.	Which device is used in thermal power plants to	o reduce level of pollution?			
	(A) induced draft fan	(B) precipitator			
	(C) chimney	(D) pulveriser			
85.	De-aeration of feed water is carried out becaus	e it reduces :			
	(A) cavitation of boiler feed pumps	(B) corrosion caused by oxygen			
	(C) heat transfer coefficient	(D) pH value of water			
86.	As a result of blade friction the relative velocity relative velocity is:	ty at outlet of impulse turbine compared to inle	et		
	(A) nearly same	(B) 2% less			
	(C) 10-15% less	(D) 30% less			
87.	Commonly used method of governing in steam turbines is by:				
	(A) throttle governing	(B) nozzle control governing			
	(C) bypass governing	(D) hydraulic governing			
88.	Reheat cycle in steam power plant is used to: (A) prevent excess of 10-12% moisture contents (B) utilize heat of the flue gases (C) increase plant efficiency (D) improve condenser performance	nt in last stages of turbine			
89.	For a convergent divergent nozzle, the mass flo inlet pressures:	w rate remains constant if the ratio of exit and			
	(A) is less than critical pressure ratio(C) is more than critical pressure ratio	(B) is equal to the critical pressure ratio(D) is infinity			
90.	The maximum velocity attainable at the throat of a steam nozzle is:				
	(A) supersonic velocity	(B) slightly less than sonic velocity			
	(C) sonic velocity	(D) slightly more than sonic velocity			
91.	The effect of friction in nozzle is to:				
	(A) keep dryness fraction constant				
	(B) increase dryness fraction				
	(C) decrease dryness fraction	. 1			
	(D) first increase dryness fraction up to a certain	in limit and then decrease			

92.	The super saturation of steam results in slight:					
	(A) increase in entropy	(B)	increase of final dryness fraction			
	(C) increase of discharge	(D)	all of the above			
93. The most efficient method of compressing air is to compress it:						
	(A) isothermally	(B)	adiabatically			
	(C) isentropically	(D)	as per law $PV^n = C$			
			_			
94.	Aeroplanes employ following type of compressor:					
	(A) radial flow	(B)	axial flow			
	(C) centrifugal	(D)	combination of above			
95.	25. Ratio of indicated horse power and brake horse power is known as:					
	(A) mechanical efficiency	(B)	volumetric efficiency			
	(C) isothermal efficiency	(D)	relative efficiency			
	•		•			
96.	A compressor at high altitude will draw:					
	(A) more power	(B)	less power			
	(C) same power		none of the above			
	•					
97.	Thermal conductivity of solid metals with rise is ten	npera	ture normally:			
	(A) increases	(B)	decreases			
	(C) remains constant	(D)	unpredictable			
98. Heat is transferred by all three modes, viz, conduction, convection and radiation in:						
	(A) electric heater	(B)	steam condenser			
	(C) refrigerator condenser coils	(D)	boiler			
99.	Ratio of heat flow q_1/q_2 from two walls of same the	nickn	ess having their thermal conductivities			
	as $k_1 = 2k_2$ will be:					
	(A) 0.5	(B)	1			
	(C) 2	(D)	4			
100.	In heat exchangers, degree of approach is defined a	as the	e difference between temperatures of:			
	(A) cold water inlet and outlet	(B)	hot medium inlet and outlet			
	(C) hot medium outlet cold water inlet	(D)	hot medium outlet cold water outlet			
101. The value of Prandlt number for air is around:						
	(A) 0.1	(B)	0.3			
	(C) 0.7	(D)	1.7			
102. The energy distribution of an ideal reflector at higher temperature is largely in the range of :						
	(A) shorter wavelength		longer wavelength			
	(C) remains same at all wavelengths	(D)	wavelength has nothing to do with it			
EIJ-50100-A 13 [Turn over						
		Ш	-			

(A)	the heat transfer equation $\nabla^2 T = 0$ is known as: Laplace equation Fourier equation		General equation of heat transfer Poisson's equation		
(A)	ermal radiation extends over the range of : 0.01 to 0.1 μ 100 to 250 μ		0.1 to 100μ 250 to 1000μ		
(A)	e boiling point of ammonia is: 0 °C -33.3 °C	, ,	-50 °C 33.3 °C		
(A)	e ton of refrigeration corresponds to: 210 kJ/min 335 kJ/min	` ′	210 kJ/h 335 kJ/h		
(A)	e refrigerant for a refrigerator should have : high sensible heat high latent heat	, ,	high total heat low latent heat		
(A)	Frigeration in aeroplanes usually employs the follog CO ₂ Freon-22	(B)	g refrigerant : Freon-11 Air		
 109. In a flooded type evaporator of a refrigerator, an accumulator at suction of the compressor is used to (A) collect liquid refrigerant and prevent it from going to compressor (B) detect liquid in vapour (C) superheat the vapour (D) collect vapours 					
(A)	nen two refrigerants are mixed in the proper ratio synthetic refrigerant high pressure refrigerant	(B) (D)	auxiliary refrigerant		
(A)	e most suitable refrigerant for a commercial ice p brine Freon		NH ₃		
(A) (B) (C)	w point temperature is constant as long as there no change in moisture content of the air no change in volume of air no change in dry bulb and wet bulb temperature no change in relative and specific humidity of a	re			

113.	13. The comfort conditions in air conditioning are:						
	(A) 22 °C dry bulb temperature and 60% relative humidity						
	(B) 25 °C dry bulb temperature and 100% relative humidity						
	(C)	(C) 20° C dry bulb temperature and 75% relative humidity					
	(D) 15°C bulb temperature and 80% relative humidity						
114. Air is normally dehumidified by:							
	(A)	injecting water	(B)	passing steam			
	(C)	heating	(D)	cooling			
115. A fluid in equilibrium cannot sustain:							
	(A)	tensile stress	(B)	compressive stress			
	(C)	shear stress	(D)	bending stress			
116. Which of the following instrument can be used for measuring speed of an aeroplane?							
	(A)	orifice plate	(B)	hot wire anemometer			
	(C)	rotameter	(D)	pitot tube			
117. Euler's dimensionless number relates the following:							
	(A)	Inertial force and gravity	(B)	Viscous force and Inertial force			
	(C)	Pressure force and Inertial force	(D)	Pressure force and viscous force			
118. Power transmitted through a pipe is maximum when the loss of head due to friction is:							
	(A)	one-half of the total head supplied	(B)	one-third of the total head supplied			
	(C)	one-fourth of the total head supplied	(D)	zero			
119. The efficiency of a centrifugal pump is maximum when its blades are:							
	(A)	straight	(B)	bent forward			
	(C)	bent backward	(D)	bent forward first and then backward			
120. In axial flow fans and turbines, fluid enters and leaves as follows:							
	(A)	radially, axially	(B)	axially, radially			
	(C)	axially, axially	(D)	radially, radially			

ROUGH WORK